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1. INTRODUCTION

Structural elements such as cylindrical, conical, and joined conical-cylindrical shells are
commonly used as principal structural elements in the design of aerospace and nuclear
structures. Furthermore, the structural sections, in particular, joined conical-cylindrical
shells are extensively used as hydraulic nozzles, diffusers, horn antennae, etc. Information
about the dynamic behavior of such joined conical-cylindrical shells with different system
parameters may become advantageous for the economical designs.

The study of free vibration behaviours of isotopic conical and cylindrical shells has been
carried out by many investigators and is well documented by Leissa [1]. Limited work on
the study of vibrations of isotropic joined conical-cylindrical shells has been carried out by
Hu and Raney [2], Lashkari and Weingarten [3] and Irie et al. [4]. Theoretical study using
transverse matrix analysis has been employed in reference [4] whereas experimental and
analytical studies have been made in references [2, 3].

The work concerning the characteristics of laminated anisotropic circular cylindrical
shells has been recently reviewed in the work of Noor and Burton [5]. Some of the
important contributions related to vibration of composite shells are cited here. Shivakumar
and Krisnamurty [6] have dealt with the vibration of laminated circular cylindrical shells,
whereas vibration and damping of laminated composite shells have been analyzed by Alam
and Asnani [7]. The dynamic study of laminated conical shell has been carried out recently
by Ramesh and Ganesan [8], Khatri and Asnani [9] and Korjakin et al. [10]. Although
many investigators have developed general finite-difference/finite element or numerical
integration techniques that allow the evaluation of dynamic behaviours of the arbitrary
laminated composite shells of revolution, the available studies in the literature are mostly
limited to either conical or cylindrical shells. However, no specific discussion has been found
in the literature concerning dynamic analysis, in particular, free vibration characteristics of
the laminated fibre-reinforced composite shells whose meridian contains a geometric
discontinuity (conical-cylindrical and conical-cylindrical-conical shells). This has
prompted the present authors to study and provide data for the joined laminated composite
shells reported here.

For the purpose of this study, the finite element method is used for analysing the free
vibration of laminated anisotropic composite conical-cylindrical shell structures. A simple
two-noded shear flexible axi-symmetric shell element based on field consistency approach
[11] is employed. The in-plane and rotary inertia effects are included in the model. The
formulation developed here is used for obtaining the natural frequencies and the mode

0022-460X/00/450920 + 11 $35.00/0 © 2000 Academic Press



LETTERS TO THE EDITOR 921

shapes for the laminated cross-ply composite joined conical-cylindrical and
conical-cylindrical-conical shell systems.

2. FORMULATION

An axi-symmetric laminated composite joined conical-cylindrical-conical shell is
considered with the co-ordinates s, 6 along the meridional and circumferential directions,
and z along the radial or thickness direction, as shown in Figure 1. By using the Mindlin
formulation, the displacements at a points (s, 0, z) are expressed as functions of the
mid-plane displacements u,, v, and w, and independent rotations i, and f5, of the
meridional and hoof sections respectively, as

M(S, 67 Z t) = uO(S> 97 t) - Zﬁs(sa 97 t))
U(S, 99 Z, [) = UO(Sa 93 t) - Zﬂﬂ(sn 03 t)
w(s, 0, z,1) = w(s, 0,1) (1)

where t is the time.
By using the semi-analytical approach, u, vy, w, fi;, and f5, are represented by a Fourier
series in the circumferential angle 6. For the nth harmonic, these can be written as
Uy = ug(s, t)cosnb, vy = vo(s, t)sinnd, w = w(s,t)cosnb,

PBs = Ps(s, t)ycosnl, By = Py(s, t)sin nd. 2)

The strains pertaining to a truncated cone are defined as [12]

, &p —zé, ;
o)

The mid-plane strains ¢,, bending strains ¢, and shear strains &, in equation (3a) are written
as

6“0
0s
. avo
{ep} = <u0sm¢> +%+wcos¢>>/r , (3b)
Oug ) PR
0 vosSin¢ |/ r + 0vy/0s
— 0P,/0s
{en} = — (Bssin ¢ + 0fy/00)/r , (30)

(cos ¢ Ove/0s — 0fs/00 + Pysin p)/r — 0f3/0s
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Figure 1. Geometry of a joined conical-cylindrical-conical shell (three-section).
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where r(s) is equal to R; + s sin ¢ and the subscript comma denotes the partial derivative
with respect to the spatial co-ordinate succeeding it. Ry and ¢ are the small circle radius and
semi-cone angle respectively.

IF {N} represents the membrane stress resultants (Ng, Ngg, Nyg) and {M} the bending
stress resultants (Mg, Mg, M), one can relate these to the membrane strains {¢,} and
bending strains {¢,} through the constitutive relation as

{N} =[A4]{e,} + [B]{e»} and {M} =[B]{e,} + [D] {&}. 4)

where | 4;; |, | Bi; |, | Dij | (i,j = 1,2, 6) are the extensional, bending-extensional coupling,
and bending stiffness coefficients of the composite laminate. Similarly, the transverse shear
force [Q] representing the quantities (Q,., Qy.) are related to the transverse shear strains {,}
through the constitutive relation as

{0} = [E] {&}, &)

where [E;;] (i, j = 4, 5) are the transverse shear stiffness coefficients of the laminates. For
a composite laminate of thickness h, consisting of [ layers with stacking angles
o; (i=1,...,1) and the layer thickness h; (i = 1, ..., I), the necessary expression to compute
the stiffness coeflicients, available in the literature [13] are used here.

The strain energy functional U is given as

UO) = (1/2)] Clon T o)+ {ap) T8 s} + {60} TB) 5} + {2000

+ {&}T[E]{e,}] dA4, (6)

where {0} is the vector of the degrees of freedom.
The kinetic energy of the shell is given by

T() = (1/2>J [pGi3 + 63+ ) + 182 + f2)] dA, ™)

A
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where p = f/;/zpdz, I= h—/i/z pz* dz and p is the mass density. A dot over the variable
represents the partial derivative with respect to time.
Substituting Egs. (6) and (7) into Lagrange’s equation of motion, one obtains the

governing equation for free vibrations of the shell as

[M] {5} + [K1{0} = {0}, ®)

where [M] and [ K] are the mass matrix and stiffness matrices respectively.
The eigenvalues and the associated mode shapes are evaluated using the standard
eigenvalue extraction algorithm.

3. RESULTS AND DISCUSSION

In the section, we use the above formulation to investigate the effects of parameters like
cone angle and number of cross-ply layers on the free vibration behavior of laminated
joined conical-cylindrical and conical-cylindrical-conical shells. Since the finite element is
based on consistency approach, exact integration is used to evaluate all the energy terms.
The shear correction factor is taken as 5/6. Based on progressive mesh refinement,
a 40-element idealization for two-section shell geometry, and a 60-element idealization for
a three-section case are found to be well adequate to model the full shell for the present
analysis. Firstly, the formulation developed herein is validated considering free vibration
analysis of isotropic joined conical-cylindrical shell [4] and laminated circular sandwich
conical [10, 14] and the results are compared in Tables 1 and 2 along with the available
solutions. It is observed from these tables that the present results are in fairly good
agreement with those of the existing results. The small discrepancies in the results may be
attributed to the different theories and solution approaches used in the literature [4, 10, 14].
The material properties of CFRP, unless specified otherwise, used in the present analysis are

EL/ET = 3981 13, GLT/ET = 04906, GTT/ET = 02453, VT = 025,
p=1524kg/m?®, E;=0053x10'"' N/m?

where E, G, and v are Young’s modulus, shear modulus and Poisson’s ratio. L and T are the
longitudinal and transverse directions respectively, with respect to fibres. All the layers are
TaBLE 1

Comparison of natural frequencies of a cantilever cylindrical-conical isotropic shell:
(L/Ry =2,L¢/Ry =1,h/Ry =0-01,v =03, ¢ = 30°)

Circumferential wave number (n); f (rad/s)

Reference [4] Present
m' 0 1 5 0 1 5
1 0-5047 0293 0-2021 0-5016 0-2618 0-2061
2 09312 06363 0-2966 — 0-607 02962
3 0-9566 0-8116 0-373 0-953 0-8161 —
4 09718 09316 0-5805 0-963 — 0-5961
5 1-0122 09528 06138 0984 0-9634 06215

fAxial half wave number.



924 LETTERS TO THE EDITOR
TABLE 2

Natural frequencies f(Hz) for the clamped—clamped conical sandwich shell: (top/bottom layer:
E; = 2508 GPa, v, = 0-20, p, = 2800 kg/m?3, hy = 0-535 mm; core layer: G, = 0:2204 GPa,
G3 = 0126 GPa, p. = 36:8 Kg/m>, h, = 7-62 mm; Lc = 1-8415 m, small radius = 0-5702 m,

¢ = 507°)

m n Present Reference [14] Reference [10]

1 1 304-52 — 300-4
2 181:72 177-20 184-7
3 12728 126-00 1279
4 111-65 110-00 111-6
5 12795 126:70 1284
6 165-05 163-50 166-4

2 1 51978 — 5205
2 342:35 340-10 349-8
3 255-85 254-30 250-4
4 210-50 209-70 200-6
5 199-22 197-70 1885
6 21678 2148 209-7

of equal thickness and the ply-angle is measured with respect to the s-axis (longitudinal
axis). The boundary conditions considered in the present analysis are:
simply supported

u=w=p,=0 ats=0,L

clamped-clamped

u=v=w=p=0=0 ats=0,L.

Here, the free vibration analysis of laminated conical-cylindrical shells (L./R; =
(cosec ¢ + sec ¢)/2; Lo/Ry = 1; Ry/h = 300 where L. and L, are the meridional length of
conical and cylindrical section and R, is the radius of cylinder) is carried out for
fundamental/lowest mode, i.e., n corresponding to n., n denotes the circumferential full

wave number. The plots of non-dimensional frequency Q(= @./pohR?1/D;
D = E h3/[12(1 — v vr1)]) with the respect to cone angles for different combinations of
cone (¢ =0, 15, 30 and 45°) and cylinder sections are depicted, for simply supported and
clamped boundary conditions. The conical section assumed at the ends of the cylindrical
shell is of either convergent or divergent type (with respect to cylinder).

The variations of fundamental frequency and its associated wave number n,, for cross-ply
laminates are highlighted in Figure 2 for simply supported joined conical-cylindrical shells
(two section). It is seen from Figure 2(a) that, in general, for the cylindrical shell with
convergent conical section, critical wave number n, corresponding to the fundamental
frequency is less in comparison with those of cylindrical one with divergent conical end case.
Also, it is brought out from Figure 2(b) that the increase in the cone angle, irrespective of the
type of cone (convergent or divergent), enhances the value of natural frequency. This is
mainly due to the increase in the severity of the geometric discontinuity that, in turn,
produces a stiffening effect around the joint (cone-cylinder). Furthermore, it is noticed from
Figure 2(b) that the value of frequency is much higher for the convergent conical-cylindrical
shell compared to those of divergent conical-cylindrical case. However, for the cylindrical
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Figure 2. Effect of semi-cone angle of laminated composite convergent/divergent conical-cylindrical shells with
simply supported ends on free vibrations (two-section): (a) critical circumferential wave number, (b) fundamental
frequency at ng.. (——) 0% (coereennee ) 0°/90°%; (-—--), 0°/90°/0°; (---=--), (0°/90°/0°/90°);.

shell with divergent conical end structure, the differences in the values of the frequency are
insignificant for the higher cone angles considered here.

Also, one can note from Figure 2 that the influence of the number of layers in the
cross-ply laminated conical-cylindrical shells on the dynamic behavior is significant. In
general, the single-layered orthotropic shell section has the highest critical value for
circumferential wave number n, and then followed by the three-layered, two-layered cases,
and lastly, by the eight-layered symmetric laminate, except at higher cone angle for the
convergent conical-cylindrical case. For the convergent conical-cylindrical shell with
higher cone-angle, the critical wave number increases for two-layered and eight-layered
shells. For the chosen cone section at the end of the cylindrical shell, the variation in the
value of n,, and its associated frequency highly depend on the directional stiffness provided
by the anisotropic properties in the laminates. It is further seen from Figure 2(b) that the
frequency is very low for the single-layered orthotropic shell, and next higher cases are
corresponding to the three-layered, two-layered, and finally the eight-layered symmetric
laminates. The behaviours such as variations of n, and, in turn, change in the values of
frequency highly depend on the contribution of membrane, bending and to some extent
shear strain energies to the total internal energy of the shell structure. For instance, a higher
n.,. value for orthotropic case, in general, may lead to very less contribution of membrane
energy to the total strain energy and thus, the system has very low value of the flexural
frequency. Also, it is brought out from Figure 2(b) that, for the cylindrical section with
convergent conical end, the frequency values are higher than those of the cylindrical section
with divergent cone. Further, the presence of coupling effect due to two-layered laminate is
to lower the value of frequency compared to the case of eight-layered one.

Free vibration study is also made for joined conical-cylindrical-conical shell
(three-section). Keeping the same cylindrical shell geometry as that of two-section and
attaching conical section at both ends of the cylindrical shell, three-section shell geometry is
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Figure 3. Effect of semi-cone angle of laminated composite convergent/divergent conical-cylindrical shells with
simply supported ends on free vibrations (three-section): (a) critical circumferential wave number, (b) fundamental
frequency at n,.. ——, 0% .......... , 0°/90°% ——-—, 0°/90°/0°%; —-- -+, (0°/90°/0°/90°),.

considered. The length of each conical section is assumed as half of the conical portion
pertaining to the two-section cases. The dynamic characteristics of laminated shells
predicted here are described in Figure 3 for the simply supported case.

It is understood from Figure 3(a) that, for the three-section shell, the critical
circumferential wave number for the convergent conical shell combinations, irrespective of
the cone angles, is considerably high compared to those of the two-section case whereas it is
slightly more for the divergent conical shell combinations. However, for the divergent
conical shell case having higher cone angle, there appears to be no change in the values of
n,. while comparing with the two-section one (Figure 2(a)). Furthermore, it is observed from
Figure 3(b) that, for the cylindrical shell with divergent conical ends, the value of frequency
is very high compared to the value of the two-section case. It can be also noticed that, for the
case of cylindrical shell with convergent conical ends compared to the corresponding
two-section case, the change in the value of natural frequency is less for the higher cone
angle, and more so for the deep conical sections.

It is clear from Figure 3(a) that the influence of number of layers on the n,, is qualitatively
similar to those of two-section shells. However, one can notice here that the value of
n., increases with the increase in the divergent cone angle, up to a certain value. But unlike
in the case of two-section shells, here, n, increases with the cylindeical shell having
convergent conical end sections. It can be also opined from Figure 3(b) that the variation in
the trend of frequency curve is almost symmetrical with respect to cone angles.

A similar study is carried out considering clamped ends for the two-section and
three-section cases, and their dynamic characteristics are exhibited in Figures 4 and 5,
respectively. The behaviours of the shell with respect to n, and the variation in the
frequency trend are qualitatively very similar to those of the simply supported one. It is
observed from these figures that the increase in the values of the natural frequency
corresponding to n, is very less for the clamped boundary condition considered here in
comparing with those of simply supported shell.

The mode shapes for the selected geometries and chosen circumferential wave numbers
are presented for both simply supported and clamped shells having two-section in Figures 6
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Figure 4. Effect of semi-cone angle of laminated composite convergent/divergent conical-cylindrical shells with
clamped ends on free vibrations (two-section): (a) critical circumferential wave number, (b) fundamental frequency
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Figure 5. Effect of semi-cone angle of laminated composite convergent/divergent conical-cylindrical-conical
shells with clamped ends on free vibrations (three-section): (a) critical circumferential wave number, (b)
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and 7. The meridional mode shapes of the normalised normal displacement W, in-plane
displacements U and V are highlighted in these figures. It is noticed from Figures 6 and 7
that there is a sharp change in the mode shapes at the junction of cone-cylinder shell,
irrespective of the cone angle considered here and, in turn, indicates the stiffening effect of
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Figure 7. Mode shapes of clamped two-section shells with different conical sections and circumferential wave
numbers (n = 2, n,, & 12): (a) ¢ = 15°, (b) ¢ = 45° (B~ W; -O— V; A~ 1),

the joint and the presence of the localised high bending stresses. It is also observed that the
change in the displacement gradient is more for W. One can also conclude from these
figures that the in-plane motions decrease with the increase in the value of circumferential
wave number. However, normal displacement, W highly depends on n and cone angle. It is
further inferred that for low value of n, the joint acts as an elastic support for the conical
component of the shell having low cone-angle whereas it is like a hinged support for the
cylinder when the number is more than n,. Furthermore, it exhibits that the deflection
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pattern of V is similar to that of W, but is in the opposite direction. For higher cone-angle
case, the cone portions acting as hinged supports are seen even at n = n,,, irrespective of the
type of end supports. For the low value of n, U and V' are more significant for the clamped
case compared to those of the simply supported one.

Similar mode shape plots for the three-section case concerning clamped supports are
shown in Figure 8 for the selected cone sections (convergent or divergent with 15° and 45°)
and circumferential wave number, n (2, n., and 12). One can notice from Figures 8(a) and 8(c)
that the change in the gradient of the displacement is very high for the three-section case
compared to those of the two-section case. For cylindrical shell with convergent cone
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sections, the joints act as hinged supports for the cylinder, especially when the shell has large
value of n, and shows insignificant values for the displacements over the conical sections, as
observed in the two-section case. The mode shapes for the divergent cases are given in
Figure 8(b) with 15°, and in Figure 8(d) with 45° cone angle. For a low value of n, the
variation of the normal displacement W and in-plane displacement V' is linear over
the cylindrical component whereas it is constant and increases with cone angle for a large
value of n. It is further opined from Figures §(b) and 8(d) that, in general, the conical parts
undergo high displacement compared to the cylindrical section and it depends on the value
of n and divergent cone angle. It is hoped that this study will be useful for the
designers/engineers while dealing with shell structures having geometric discontinuity
under dynamic situations.
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